Mean Lipschitz Spaces Characterization via Mean Oscillation
نویسندگان
چکیده
منابع مشابه
Mean oscillation of functions
The oscillatory behavior of functions with compactly supported Fourier transform is characterized in a quantiied way using various function spaces. In particular, the results in this paper show that the oscillations of a function at large scale are comparable to the oscillations of its samples on an appropriate discrete set of points. Several open questions about spaces of sequences are answere...
متن کاملHolomorphic Mean Lipschitz Spaces and Hardy Sobolev Spaces on the Unit Ball
For points z = (z1, · · · , zn) and w = (w1, · · · , wn) in C we write 〈z, w〉 = z1w1 + · · ·+ znwn, |z| = √ |z1| + · · ·+ |zn|. Let B = {z ∈ C : |z| < 1} denote the open unit ball and let S = {ζ ∈ C : |ζ| = 1} denote the unit sphere in C. The normalized Lebesgue measures on B and S will be denoted by dv and dσ, respectively. Let H(B) denote the space of all holomorphic functions in B. Given 0 <...
متن کاملThe Mean Curvature Flow Smoothes Lipschitz Submanifolds
The mean curvature flow is the gradient flow of volume functionals on the space of submanifolds. We prove a fundamental regularity result of mean curvature flow in this paper: a Lipschitz submanifold with small local Lipschitz norm becomes smooth instantly along the mean curvature flow. This generalizes the regularity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In particular, any ...
متن کاملMultilinear integral operators and mean oscillation
Let b ∈ BMO(Rn) and T be the Calderón–Zygmund singular integral operator. The commutator [b,T ] generated by b and T is defined by [b,T ] f (x) = b(x)T f (x)−T (b f )(x). By a classical result of Coifman et al [6], we know that the commutator is bounded on Lp(Rn) for 1 < p < ∞. Chanillo [1] proves a similar result when T is replaced by the fractional integral operators. In [9], the boundedness ...
متن کاملVector Valued Measures of Bounded Mean Oscillation
The duality between Hl and BMO, the space of functions of bounded mean oscillation (see [JN]), was first proved by C. Fefferman (see [F], [FS]) and then other proofs of it were obtained . Using the atomic decomposition approach ([C], [L]) the author studied the problem of characterizing the dual space of Hl of vector-valued functions . In [B2] the author showed, for the case SZ = {Iz1 = 1}, tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2011
ISSN: 1027-5487
DOI: 10.11650/twjm/1500406377